ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ТЕПЛОВЫЕ СЕТИ"

СОГЛАСОВАНО

Генеральный директор ОАО «Тепловые сети»

Тепловые сети

радская обп.

Володкевич

2011 г.

УТВЕРЖДАЮ

Глава администрации Трубникоборского

сельского поселения

С.А. Шейдаев

СХЕМА ТЕПЛОСНАБЖЕНИЯ

ТРУБНИКОБОРСКОГО СЕЛЬСКОГО ПОСЕЛЕНИЯ

ТОСНЕНСКОГО РАЙОНА ЛЕНИНГРАДСКОЙ ОБЛАСТИ

Содержание

1.	Введение	2
2.	Общая характеристика	3
3.	Существующее положение в сфере производства	4
	3.1. Существующие источники теплоснабжения	4
	3.2. Существующие тепловые сети	4
	3.3. Существующие технические и технологические	
	проблемы в системе теплоснабжения	5
4	4. Перспектива развития системы теплоснабжения	7
5	5. Выводы	10
6	 Приложение 	12

1. Введение

Схема теплоснабжения Трубникоборского сельского поселения разработана на основании №190-ФЗ от 27.07.2010 г. «О теплоснабжении».

Разработка схем теплоснабжения направлена на достижение показателей по безопасности, надежности и эффективности системы теплоснабжения Трубникоборского сельского поселения.

Для достижения вышеуказанных параметров теплоснабжающему предприятию совместно с администрацией Трубникоборского сельского поселения необходимо выполнить следующие действия:

- мероприятия ПО HOBOMY строительству, реконструкции техническому перевооружению источников тепловой энергии, необходимых ДЛЯ обеспечения теплоснабжения эффективного существующих И перспективных потребителей тепловой энергии:
- мероприятия по новому строительству и реконструкции тепловых сетей, обеспечивающих перераспределения потоков тепловой энергии (мощности) из зон с избытком тепловой мощности в зоны с её дефицитом;
- мероприятия по новому строительству и реконструкции тепловых сетей для обеспечения перспективных приростов тепловой нагрузки во вновь осваиваемых районах поселения, городского округа под жилищную, комплексную или производственную застройку;
- мероприятия по реконструкции участков тепловой сети с увеличением диаметра трубопроводов для обеспечения перспективных приростов тепловой нагрузки в зонах существующей застройки поселения, городского округа;
- мероприятия по новому строительству и реконструкции тепловых сетей для перераспределения зон действия источников тепловой энергии для обеспечения оптимальной загрузки наиболее эффективных агрегатов источников тепловой энергии;
- мероприятия по новому строительству и реконструкции тепловых сетей для обеспечения нормативной надежности теплоснабжения;
- мероприятия по реконструкции участков тепловых сетей, подлежащих замене по результатам технического освидетельствования;

2. Общая характеристика

Расположение.

Трубникоборское сельское поселение расположено на юго-востоке Тосненского муниципального района Ленинградской области, её территория составляет 86326 га и в его состав входит 16 населенных пунктов. В д. Трубников Бор находится железнодорожная станция Трубниково.

Климат.

Климат территории относится к переходному от морского к континентальному. Он характеризуется высокой влажностью, продолжительной и умеренно холодной с частыми оттепелями зимой, умеренно теплым и влажным летом. Преобладают западные ветры.

Наибольшая продолжительность дня 22 июня, наименьшая -22 декабря. В году в среднем 75 солнечных дней.

Среднегодовая температура воздуха - +4,9°С. Самые холодные месяцы в году - январь и февраль. Средняя температура в этот период составляет -7,8°С. Самый теплый месяц года – июль, средняя температура для которого +17,7°С. Относительная влажность воздуха почти весь год значительна – около 80%, кроме лета, когда она снижается в среднем до 67%. Атмосферных осадков выпадает в среднем 650 мм в год.

Зима умеренно мягкая. Снежный покров устанавливается во 2-й половине ноября и держится до середины апреля. Весна поздняя, затяжная. Лето умеренно теплое. Осень пасмурная и туманная.

Жилищный фонд и жилищное строительство

Существующий жилищный фонд Трубникоборского сельского поселения характеризуется следующими показателями:

- 1. Общая площадь составляет жилищного фонда составляет 7419 м2.
- на территории расположены 8 многоквартирных домов;
- число постоянных хозяйств составляет 241 домов;
- 2. Численность населения д. Трубников Бор составляет 701 чел.

3. Существующее положение в сфере производства.

В Трубникоборском сельском поселении Тосненского района Ленинградской области располагается 1 котельная, входящие в зону обслуживания теплоснабжающей организации ОАО «Тепловые сети»

3.1. Существующие источники теплоснабжения

Котельная д. Трубников Бор

- 1). Котельная расположена по адресу: д. Трубников Бор, Московское ш., д.63 снабжает теплоносителем следующие категории потребителей: исполнители, предоставляющие коммунальные услуги гражданам; бюджетные потребители; иные потребители.
- Котельная работает на природном газе. В котельной установлены котлы: ДЕ -6,5/13 $\,-2$ шт. (паровые),
- Установленная мощность 10,4 Гкал/час
- Подключенная нагрузка 1,85 Гкал/час
- Расход на собственные нужды 3,79 %
- Учет использованного газового топлива производится по приборам учета.
- Приборный учет отпуска тепловой энергии в сеть не производится.
- Отпуск тепловой энергии осуществляется по температурному графику 95-70 °C.
- Отпуск тепла потребителям в 2010 году составил 2354,40 Гкал из них бюджетным потребителям 462,87 Гкал исполнителям, оказывающим коммунальные услуги 1679,70 Гкал прочие потребители 211,83 Гкал
- Тепловые нагрузки потребителей в зоне действия данного источника приведены в приложении.

3.2. Существующие тепловые сети

Котельная д. Трубников Бор

Система теплоснабжения – открытая с непосредственным водоразбором сетевой воды на нужды горячего водоснабжения. Отпуск тепловой энергии осуществляется по температурному графику 95-70 С.

Диаметр существующих трубопроводов тепловой сети от 50 до 219 мм.

Способ прокладки тепловых сетей различный: подземная бесканальная, надземная.

Год ввода в эксплуатацию до 1991 года.

Тепловые потери в тепловых сетях -31,16 %;

Способ присоединения большинства потребителей к тепловой сети - в ИТП по зависимой схеме.

На тепловых сетях в качестве секционирующей арматуры применяются клиновые задвижки, шаровые краны, затворы. Регулирующая арматура на магистральных и разводящих теплопроводах отсутствует.

Тепловые камеры на тепловых сетях применяются бетонные или кирпичные.

Примечание:

В процессе эксплуатации все тепловые сети подвергаются испытаниям на прочность и плотность для выявления дефектов не позже, чем через две недели после окончания отопительного сезона.

Во время эксплуатации тепловых сетей выполняются следующие мероприятия.

- поддерживается в исправном состоянии все оборудование, строительные и другие конструкции тепловых сетей, проводя своевременно их осмотр и ремонт;
- наблюдается за работой компенсаторов, опор, арматуры, дренажных, воздушных, контрольно-измерительных приборов и других элементов оборудования, своевременно устраняются выявленные дефекты и неплотности;
- выявляется и восстанавливается разрушенная тепловая изоляция и антикоррозионное покрытие;
- своевременно удаляется воздух из теплопроводов через воздушники, не допускается присос воздуха в тепловые сети, поддерживая постоянно необходимое избыточное давление во всех точках сети и системах теплопотребления;
- принимаются меры к предупреждению, локализации и ликвидации аварий и инцидентов в работе тепловой сети;

3.3. Существующие технические и технологические проблемы в системе теплоснабжения.

В процессе эксплуатации в действующей системе централизованного теплоснабжения наблюдаются следующие проблемы: изношенность трубопроводов систем теплоснабжения, изношенность котельного и насосного оборудования, изношенность внутридомовых систем тепло и водоснабжения, высокий уровень потерь,

высокий уровень затрат на эксплуатацию тепловых сетей, недотопы и перетопы отдельных зданий;

А также из-за изменения характера тепловой нагрузки, подключения новых теплопотребителей, увеличения шероховатости трубопроводов, корректировки расчетной температуры на отопление, изменения температурного графика отпуска тепловой энергии (ТЭ) с источника ТЭ происходит, как правило, неравномерная подача тепла потребителям, завышение расходов сетевой воды и сокращение пропускной способности трубопроводов.

В дополнение к этому, как правило, существуют проблемы в системах теплопотребления. Такие как, разрегулированность режимов теплопотребления, разукомплектованность элеваторных узлов, самовольное нарушение потребителями схем присоединения (установленных проектами, техническими условиями и договорами). Указанные проблемы систем теплопотребления проявляются, в первую очередь, в разрегулированности всей системы, характеризующейся повышенными расходами теплоносителя. Как следствие — недостаточные (из-за повышенных потерь давления) располагаемые напоры теплоносителя на вводах, что в свою очередь приводит к желанию абонентов обеспечить необходимый перепад посредством слива сетевой воды из обратных трубопроводов для создания хотя бы минимальной циркуляции в отопительных приборах (нарушения схем присоединения и т.п.), что приводит к дополнительному увеличению расхода и, следовательно, к дополнительным потерям напора, и к появлению новых абонентов с пониженными перепадами давления и т.д. Происходит «цепная реакция» в направлении тотальной разрегулировки системы.

Все это оказывает негативное влияние на всю систему теплоснабжения и на деятельность энергоснабжающей организации: невозможность соблюдения температурного графика; повышенная подпитка системы теплоснабжения, а при исчерпании производительности водоподготовки — вынужденная подпитка сырой водой (следствие — внутренняя коррозия, преждевременный выход из строя трубопроводов и оборудования); вынужденное увеличение отпуска тепловой энергии для сокращения числа жалоб населения; увеличение эксплуатационных затрат в системе транспорта и распределения тепловой энергии.

4. Перспектива развития системы теплоснабжения

Сегодня разработаны и серийно выпускаются модульные котельные установки, предназначенные для организации автономного теплоснабжения.

Блочные котельные представляют собой полностью функционально законченное изделие, оснащены всеми необходимыми приборами автоматики и безопасности. Уровень автоматизации обеспечивает бесперебойную работу всего оборудования без постоянного присутствия оператора. Автоматика отслеживает потребность объекта в тепле в зависимости от погодных условий и самостоятельно регулирует работу всех систем для обеспечения заданных режимов. Этим достигается более качественное соблюдение теплового графика и дополнительная экономия топлива. В случае возникновения нештатных ситуаций, утечек газа, система безопасности автоматически прекращает подачу газа и предотвращает возможность аварий.

При автономном теплоснабжении можно использовать новые технические и технологические решения, позволяющие полностью устранить или значительно сократить все непроизводительные потери в цепи выработки, транспортировки, распределения и потребления тепла, и не просто путем строительства мини-котельной, а возможностью использования новых энергосберегающих и эффективных технологий, таких как:

- 1) переход на принципиально новую систему количественного регулирования выработки и отпуска тепла на источнике;
- 2)эффективное использование частотно-регулируемого электропривода на всех насосных агрегатах;
- 3) сокращение протяженности циркуляционных тепловых сетей и уменьшение их диаметра;
 - 4) отказ от строительства центральных тепловых пунктов;
- 5) переход на принципиально новую схему индивидуальных тепловых пунктов с количественно-качественным регулированием в зависимости от текущей температуры наружного воздуха с помощью многоскоростных смесительных насосов и трехходовых кранов регуляторов;
- 6) установка «плавающего» гидравлического режима тепловой сети и полный отказ от гидравлической увязки подсоединенных к сети потребителей;

- 7) установка регулирующих термостатов на отопительных приборах квартир позволяют осуществить индивидуальное автоматическое регулирование теплоотдачи отопительных приборов по температуре воздуха в помещении, где установлен прибор.
- 8) поквартирная разводка систем отопления с установкой индивидуальных счетчиков потребления тепла;
- 9) автоматическое поддержание постоянного давления на водоразборных устройствах горячего водоснабжения у потребителей.

Реализация указанных технологий позволяет в первую очередь минимизировать все потери и создает условия совпадения по времени режимов количества выработанного и потребленного тепла.

Переход на принципиально новую схему индивидуальных тепловых пунктов позволяет применить более эффективную систему пофасадного авторегулирования отопления для протяженных зданий или центральную с коррекцией по температуре внутреннего воздуха в точечных зданиях, позволяет отказаться от распределительных сетей горячего водоснабжения, снизив потери тепла при транспортировке и расход электроэнергии на перекачку бытовой горячей воды. Причем это целесообразно делать не только в новом строительстве, но и при реконструкции существующих зданий.

На основании вышесказанного делаем следующие выводы — Для решения задач по обеспечению надежности, рационального расходования энергетических ресурсов и их учета, повышения качества подаваемого теплоносителя и увеличения срока службы трубопроводов и оборудования необходимо проведение комплексных мероприятий. Сначала необходимо выбрать схему теплоснабжения исходя из местных условий, задач по качеству подаваемого теплоносителя и финансовых возможностей.

Для усовершенствования системы теплоснабжения Трубникоборского сельского поселения предприятие ОАО «Тепловые сети» планирует провести следующие мероприятия:

Котельная д. Трубников Бор

Организовать наиболее оптимальную схему теплоснабжения – закрытую 4-х трубную, зависимую;

Температурный режим: для системы отопления -95-70 °C; для ГВС -70-40 °C - установить новую блок – модульную котельную (1,72 Гкал/ч);

- Произвести капитальный ремонт старых тепловых сетей, максимально используя бесканальную прокладку в связи с высоким уровнем грунтовых вод. Применять тепловую изоляцию из пенополиуретана , толщиной не менее 50 мм, с коэффициентом теплопроводности не более 0,04 Вт/м °С:

Во исполнении ФЗ 261 от 23.11.09 г. «Об энергосбережении и о повышении энергетической эффективности» необходимо рациональное использование и учет затрачиваемых энергетических ресурсов, следовательно использование современного оборудования позволит снизить затраты основных используемых ресурсов, таких как топливо, вода, электроэнергия.

При анализе фактических калькуляций по затратам получаются следующие удельные данные:

Котельная д. Трубников Бор

Расход условного топлива на выработку тепловой энергии — 230,63 кг.у.т./Гкал. Расход воды на выработку тепловой энергии — 7,08 м3/Гкал Расход электроэнергии — 33,98 к Вт.ч./Гкал.

В результате выполнения планируемых мероприятий по внедрению высокотехнологического оборудования на источнике выработки тепловой энергии и у подключенных потребителей в целях покрытия дефицита тепловой мощности вышеприведенные показатели эффективности работы системы теплоснабжения в перспективе планируются быть следующими:

Котельная д. Трубников Бор

Расход условного топлива на выработку тепловой энергии — 155,3 кг.у.т./Гкал. Расход воды на выработку тепловой энергии — 5,55 м3/Гкал Расход электроэнергии — 22,68 к Вт.ч./Гкал.

5. Выволы

Если проследить всю цепь: источник – транспорт – распределение – потребитель, то можно отметить следующее:

- 1. На источнике тепла значительно сокращается площади отводимых земельных участков. Установленную мощность источника можно выбрать почти равной потребляемой, при этом предоставляется возможность не учитывать нагрузку горячего водоснабжения, так как в часы максимум она компенсируется аккумулирующей способностью здания потребителя. Сегодня это резерв. Упрощается и удешевляется схема регулирования. Исключаются потери тепла за счет несовпадения режимов выработки и потребления, соответствие которых устанавливается автоматически. Практически, остаются только потери, связанные с КПД котлоагрегата. Таким образом, на источнике имеется возможность сократить потери более чем в 3 раза.
- 2. Тепловые сети сокращается протяженность, уменьшаются диаметры, сеть становится более ремонтопригодной. Постоянный температурный режим повышает коррозионную устойчивость материала труб. Уменьшается количество циркуляционной воды, ее потери с утечками. Отпадает необходимость сооружения сложной схемы водоподготовки. Отпадает необходимость поддержания гарантированного перепада давления перед вводом потребителя, и в связи с этим не нужно принимать меры по гидравлической увязке тепловой сети, так как эти параметры устанавливаются автоматически. Таким образом, потери в тепловых сетях снижаются почти на порядок.
- 3 Распределительные системы ЦТП и ИТП. Необходимость в ЦТП отпадает, и отсутствуют потери, связанные с ним. Схема индивидуального теплового пункта с количественно-качественным регулированием, многоскоростным смесительным насосом

в контуре отопления как при зависимом, так и независимом присоединении, а также с многоскоростным циркуляционным насосом по греющей среде в контуре горячего водоснабжения, делает его независимым от гидравлического режима тепловой сети. Кроме того, ИТП автоматически устанавливает свой гидравлический режим во внутренних системах потребителя и автоматический тепловой режим по погодному регулятору, забирая из сети ровно столько тепла, сколько в текущий момент необходимо потребителю, совершенно не влияет и не зависит от условий работы соседних потребителей.

Автоматически устанавливаются режимы ночного и дневного времени. Потери сокращаются в 5-6 раз. Контроль за работой всех автономных источников за исключением АИТ коммунальной зоны осуществляется из единого диспетчерского пункта района. Такое решение существенно сокращает эксплуатационные затраты.

4 Внутренние системы потребления, существующие или проектируемые по традиционным технологиям, должны оснащаться регуляторами циркуляции на стояках и термостатами на отопительных приборах.

Новые системы должны быть с поквартирной разводкой системы отопления и установкой на вводах регулятора потребления тепла по датчику температуры внутри помещения и счетчиком потребления тепла.

Использование в системе теплоснабжения энергосберегающих технологий и эффективных технических решений позволяет:

2. Снизить:

- суммарную установленную мощность источников тепла;
- годовую выработку тепла и, соответственно, годовой расход топлива;
- годовой расход электроэнергии;
- количество воды на подпитку тепловой сети.

2. Сократить:

- протяженность тепловых сетей (наиболее трудоемкую и капиталоемкую ее часть магистральные);
 - капитальные вложения на строительство;

6. ПРИЛОЖЕНИЕ

Прилагаемые документы

- 1. Список потребителей с указанием тепловых нагрузок
- 2. Расчетные схемы теплоснабжения:
 - 2.1. Котельная д. Трубников Бор
- 3. Расчетные таблицы гидравлического расчета.

Qrex_rb SQ_cym		0 0.0152	0 0.00574	0 0 00574		0 0173		0 0	•	0.0036	0 0.00361	0	0 0.096133	0 0.0216	0 0.0216	0 0.315283 0 0.315283	0 0.315283	**
Orex Orex_0	• 0	0	0	0	0	0	0	0	c	· 0	0	0	0	0	0	• •	0	
Огвс Огвс_пс (0.2608 0	0	0	0	0	0	0	0	0	-	0	0	0	0	0 -	0	0 0	0	
Огвс 0.2608	0	0	0.00004	0.00004	0.005	0.005	0	0	0	0.00001	0.00001	0.00528	0.00528	0	0	0.01033	0.01033	
Овент	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	
0.755598	0.0152	0.0152	0.0057	0.0057	0.168	0.168	0	0	0	0.0036	0.0036	0.090853	0.090853	0.0216	0.0216	0.304953	0.304953	
Адрес	Парковая		Озерная дом. 43		Мира дом. 1А	Ш00			население'	Трубн.бор		Трубников Бор дом. 46	лещения	Трубников Бор				
Потребитель ная с/з Ушаки'	ФАП Трубников Бор Парковая	/З "Тосненская ЦРБ"	библиотека д.Трубников Бор	К "Тосненский ЦБС"	школа	П "Трубникоборская	Жилой фонд Трубников Бор	Жилой фонд трубников Бор ч/с	Э "Расчетный центр"	Магазин	ıь Царенко А.В.	Адм.здание	твенник нежилого по	Магазин	енское РАЙПО'	в Бор'	г Трубников Бор'	
Подразделение Объект Потреби Итого по Зоне - 'Котельная с/з Ушаки'	ФАП Трубников Бор	Итого по Абоненту - 'МУ	библиотека д.Трубников Бор	Итого по Абоненту - 'МУ	школа	Итого по Абоненту - 'МУП "Трубникоборская ООШ""	Жилой фонд Трубников Бор	Жилой фонд трубников Бор ч/с	Итого по Абоненту - 'ООО "Расчетный центр" население'	Магазин	Итого по Абоненту - 'Пр-ль Царенко А.В.'	Адм.здание	Итого по Абоненту - 'Собственник нежилого помещения Дюрягина О.Ю.'		Итого по Абоненту - 'Тосненское РАЙПО'	Итого по Кварталу - '' Итого по ЦТП - 'Трубников Бор'	Итого по Зоне - 'Котельная Трубников Бор'	,
Подраз	Нет		Her		Her		Her	Нет		Her		Her .		Нет	A	1	N	
л Абонент	МУЗ "Тосненская ЦРБ"		МУК "Тосненский ЦБС"		МУП "Трубникоборская ООШ"		000 "Расчетный центр" население	ООО "Расчетный центр" население		Пр-ль Царенко А.В.		Собственник нежилого помещения Дюрягина О.Ю.		Госненское РАЙПО.				
Зона ЦТП Квартал	Котельная Трубнико Трубников в Бор Бор		Котельная Трубнико Трубников в Бор Бор		Котельная Трубнико Трубников в Бор Бор	*	Котельная Трубнико Трубников в Бор Бор	Котельная Трубнико Трубников в Бор Бор		Котельная Трубнико Т Трубников в Бор Бор		Котельная Трубнико С Трубников в Бор Бор		Котельная Трубнико Т Трубников в Бор Бор				

Тепловые нагрузки потребителей пос. Трубников Бор

Nº	Улица	Дом	Тепловые нагрузки							
			Qот.	Qгвс	Qобщ.					
п/п	адрес	Nº	Гкал/час	/час						
1	Жилой дом	1	0,145	0,108	0,253					
2	Жилой дом	2	0,145	0,108	0,253					
3	Жилой дом	3	0,145	0,108	0,253					
4	Жилой дом	4	0,017		0,017					
5	Жилой дом	5	0,01	0,008	0,018					
6	Жилой дом	6	0,01	0,008	0,018					
7	Жилой дом	7	0,01	0,008	0,018					
8	Жилой дом	8	0,01	0,008	0,018					
9	Жилой дом	9	0,01	0,008	0,018					
10	Жилой дом	10	0,037		0,037					
11	Жилой дом	11	0,037		0,037					
12	Жилой дом	12	0,037		0,037					
13	Жилой дом	13	0,39		0,39					
14	Жилой дом	14	0,39		0,39					
15	Жилой дом	47	0,066	0,048	0,114					
16	Жилой дом	48	0,099	0,072	0,171					
				*						

Гидравлический расчет д. Трубников Бор (отопление)

		_	T_	Т	Τ	Т	Γ	Г		Γ	Γ		Γ	4	200		I				
поз.13	поз.12	поз.11	поз.10	поз.9	поз.8	поз.7	поз.6	поз.5	поз.4	поз.3	поз.2	поз.1.1	поз.1	участка		вание	Наимено				
54	7.5	148.5	90	56.6	181.5	24.5	236	13	13.5	70.5	63	8	67	, м	участка	Длина					
0.025	0.05	0.05	0.05	0.05	0.063	0.04	0.07	0.04	0.04	0.05	0.063	0.07	0.085	вода, м	трубопро	10	подающе	диаметр	ний	Внутрен	
0.025	0.05	0.05	0.05	0.05	0.063	0.04	0.07	0.04	0.04	0.05	0.063	0.07	0.085	вода, м	трубопро	0	обратног	диаметр	ний	Внутрен	
0.9924	7.2008	8.1932	3.5237	3.7375	7.2612	1.5978	8.859	8.2733	6.6962	6.161	12.8572	21.1305	29.9895	воде, т/ч	трубопро	3	подающе обратног подающе	воды в	Расход		
-0.9924	-7.2008	-8.1932	-3.5237	-3.7375	-7.2612	-1.5978	-8.859	-8.2733	-6.6962	-6.161	-12.8572	-21.1305	-29.9895	воде, т/ч воде, т/ч	участка трубопро трубопро трубопро трубопро трубопро	M	обратно	воды в	Расход		
0.992	0.231	4.547	0.56	0.399	1.371	0.206	1.525	1.426	0.977	1.271	1.46	0.391	1.754	воде, м	трубопро	X	подающе	напора в	Потери		
0.992	0.231	4.547	0.56	0.399	1.371	0.206	1.525	1.426	0.977	1.271	1.46	0.391	1.754	воде, м	трубопро	3	обратно	напора в	Потери		
18.072	23.531	30.146	6.077	6.786	7.434	3.929	6.372	96.246	63.856	17.466	22.083	33.619	24.495	де, мм/м	под.тр-	напора в	е потери	линейны	е	Удельны	
18.072	23.531	30.146	6.077	6.786	7.434	3.929	6.372	96.246	63.856	17.466	22.083	33.619	24.495	де, мм/м	обр.тр-	напора в	е потери	линейны	е	Удельны	
0.576	1.045	1.189	0.511	0.542	0.664	0.366	0.656	1.876	1.518	0.894	1.175	1.564	1.506	де, м/с	под.тр-	я воды в	движени	ס	Скорост		
-0.576	-1.045	-1.189	-0.511	-0.542	-0.664	-0.366	-0.656	-1.876	-1.518	-0.894	-1.175	-1.564	-1.506	де, м/с	обр.тр-	я воды в	движени	5	Скорост Скорост		

Гидравлический расчет д. Трубников Бор (ГВС)

	ПО	п	T				T	T	T	T	Τ	T	Τ	у у
	поз.13.1	поз.12	поз.11	поз.10	поз.9	поз.8	поз.6	поз.5	поз.4	поз.3	поз.2	Поз.1.1	1103.1	2 2 0
	43.5	7.5	148.5	90	56.6	181.5	236	13	13.5	70.5	63	000	6/	Длина участка
	0.025	0.025	0.025	0.025	0.025	0.04	0.05	0.032	0.032	0.032	0.04	0.05	0.063	Внутрен ний диаметр подающе го трубопро
	0.025	0.025	0.025	0.02	0.02	0.025	0.032	0.025	0.025	0.025	0.025	0.032	0.04	Внугрен Внугрен ний Расход диаметр диаметр воды в подающе го о м трубопро вода, м воде, т/ч
	0.275	0.4585	0.7335	0.8818	0.889	1.7709	1.7709	1.8448	1.8049	1.3439	3.1488	4.9936	6.7644	Расход Расход воды в подающе обратно м м трубопро грубопро воде, т/ч
	-0.075	-0.1252	-0.2002	-0.2152	-0.2224	-0.4375	-0.4375	-0.5114	-0.4716	-0.3439	-0.8155	-1.3269	-1.7644	Расход воды в обратно м трубопро
0.0.0	0.075	0.036	1 534	1316	0.845	0.707	0 405	0.24	0.238	0 666	0 974	0.12	0.398	Потери Потери напора в напора в подающе обратно м м трубопро трубопро воде, м воде, м
0.000	0.000	0.143	0.233	0.190	0.721	0.201	0.070	0.000	0.102	0.193	0.007	0.084	0315	Внутрен Внутрен ний расход Расход Потери Потери е диаметр диаметр воды в воды в напора в напора в линейнь подающе обратног подающе обратно подающе обратно обратно подающе обратно е потери участка трубопро труб
1./	4.312	897.01	14.481	14./04	3.11/	5112	10.839	16.020	9.29	10.00/	15.057	11 717	5 661	Удельны е потери напора в под.тр-
0.132	0.415	0.96	3.235	3.435	3.957	1.185	5.269	4.539	2.551	12.51	9.0/1	4.588	1	Удельны е потери напора в обр.тр-
0.16	0.266	0.426	0.512	0.516	0.401	0.257	0.653	0.639	0.476	0.714	0.725	0.619	де, м/с	Скорост ь движени я воды в под.тр-
-0.044	-0.073	-0.116	-0.195	-0.202	-0.254	-0.155	-0.297	-0.274	-0.2	-0.473	-0.47	-0.4	де, м/с	M H